
An Automatic Synthesizer of Advising Tools for
High Performance Computing

Hui Guan ,Member, IEEE, Xipeng Shen, Senior Member, IEEE, and Hamid Krim , Fellow, IEEE

Abstract—This article presents Egeria, the first automatic synthesizer of advising tools for High-Performance Computing (HPC). When

one provides it with some HPC programming guides as inputs, Egeria automatically constructs a text retrieval tool that can advise on

what to do to improve the performance of a given program. The advising tool provides a concise list of essential rules automatically

extracted from the documents and can retrieve relevant optimization knowledge for optimization questions. Egeria is built based on a

distinctive multi-layered design that leverages natural language processing (NLP) techniques and extends them with HPC-specific

knowledge and considerations. This article presents the design, implementation, and both quantitative and qualitative evaluation

results of Egeria.

Index Terms—Performance tools, natural language processing, code optimization

Ç

1 INTRODUCTION

ACHIEVING high performance on computing systems is
challenging. It requires programmers to have a deep

understanding of the underlying computing systems and
make proper implementations to effectively harness the
computing power. The problem becomes more complicated
with the rapid changes and increasing complexity of modern
systems (e.g., many-core heterogeneous systems equipped
with Graphic ProcessingUnits) because the set of knowledge
and specifications programmers have to master grows fast
and continuously. Although performance profiling tools
(e.g., HPCToolkit [1], NVProf [2]) alleviate the problem by
identifying the potential issues, they do not provide many
guidelines on how to optimize the code to address the issues.
Coming up with available solutions still demands lots of
expertise specific to the underlying architecture.

Programming and optimization guides usually contain
optimization rules. For example, both NVIDIA and AMD
have published guides [3], [4] explaining the many intricate
features of their Graphic Processing Units (GPUs) and pro-
gramming models, the detailed guidelines and methods for
developing code that runs efficiently on each major GPU
model. Programmers could read them and try to apply what
they’ve learned to optimize their code. Such documents,
however, are often hundreds of pages long. It is difficult for
application programmers to master and memorize all the
knowledge, and quickly come upwith all the relevant guide-
lines to apply when they encounter a specific program opti-
mization problem.

In this work, we propose a framework named Egeria1 to
bridge the gap between programmers’ demands for optimiza-
tion guidelines and the hard-to-master programming guides.
Egeria consists of two stages. The first stage is advising sentence
recognition. When one provides Egeria with some HPC pro-
gramming guides as inputs, it extracts a concise list of essen-
tial rules, called advising sentences, from the documents. The
second stage is knowledge recommendation, which builds a text
retrieval (TR) agent to interactively offer suggestions for spe-
cific optimization questions. The TR agent together with the
list of advising sentences compose an advising tool synthe-
sized by Egeria.

With such advising tools, programmers no longer need
to memorize every optimization guideline or spend time to
search. When encountering an optimization problem, they
can just feed the advising tool either a performance profiling
report of an execution of interest or some queries on how to
solve certain specific performance issues. The tool will
immediately provide a list of guidelines for solving those
performance problems.

Recognitions of advising sentences require the analysis of
the semantic and syntax of the sentences through some Natu-
ral Language Processing (NLP) techniques. Egeria adopts a
multi-layered scheme guided by HPC domain-specific prop-
erties. Advising sentences in programming guides for HPC
share some common syntactic and semantic patterns and
some special words and phrases related to performance
improvements in HPC. Exploiting such features helps signifi-
cantly simplify the problems. The multi-layered design inte-
grates the HPC domain properties into the NLP techniques in
each of the layers. Through treatments at the levels of key-
words, syntactic structures, and semantic roles guided by the
HPC special features, Egeria is able to successfully recognize
advising sentences from rawprogramming guide documents.
Coupled with some text retrieval techniques (VSM [5] and

� Hui Guan is with University of Massachusetts Amherst, MA 01002.
E-mail: huiguan@cs.umass.edu .

� Xipeng Shen and Hamid Krim are with North Carolina State University,
Raleigh, NC 27695. E-mail: {xshen5, ahk}@ncsu.edu.

Manuscript received 23 Sept. 2019; revised 15 Aug. 2020; accepted 18 Aug.
2020. Date of publication 21 Aug. 2020; date of current version 4 Sept. 2020.
(Corresponding author: Hui Guan.)
Recommended for acceptance by R. Yahyapour.
Digital Object Identifier no. 10.1109/TPDS.2020.3018636

1. The name comes from a nymph Egeria in Greek mythology who
gives wisdom and prophecy.

330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9128-2231
https://orcid.org/0000-0001-9128-2231
https://orcid.org/0000-0001-9128-2231
https://orcid.org/0000-0001-9128-2231
https://orcid.org/0000-0001-9128-2231
https://orcid.org/0000-0003-4971-1690
https://orcid.org/0000-0003-4971-1690
https://orcid.org/0000-0003-4971-1690
https://orcid.org/0000-0003-4971-1690
https://orcid.org/0000-0003-4971-1690
mailto:huiguan@cs.umass.edu
mailto:xshen5@ncsu.edu
mailto:ahk@ncsu.edu

TF-IDF [5]), Egeria accurately finds the relevant advising
sentences for users’ queries.

It is worth mentioning that Egeria itself is not a TR system
but a generator of TR systems for various HPC domains. Hav-
ing an easy-to-use generator of advising tools is essential for
meeting the needs of HPC, thanks to its many domains and
the fast changes in each of them. To our best knowledge, Ege-
ria is the first auto-synthesizer of advising tools for HPC.

We conduct both quantitative and qualitative experi-
ments to evaluate Egeria. In the experiments, advising tools
are generated for CUDA programming on NVIDIA GPUs,
OpenCL programming on AMD GPUs, and Xeon Phi pro-
gramming on Intel Xeon Phi coprocessors. Egeria is able to
recognize the advising sentences from these programming
guides with over 80 percent precision rates, significantly
higher than other alternative methods. Its two-stage design
makes it able to answer CUDA program optimization
queries with a 80-100 percent accuracy, substantially higher
than a single-stage design. Two user studies also demon-
strate the overall usefulness of Egeria in easing their efforts
in optimizing programs. This work extends our conference
paper [6] in several aspects: (1) An adjustable relevance fac-
tor is added for users to control the number of retrieved
results in Section 4; (2) A sensitivity study on the factor is
reported in Section 5.3. (2) Several semantic-based techni-
ques are explored for improving both knowledge recom-
mendation and advising sentence recognition components
in Sections 6 and 7. (3) A dependency-parsing selector is
proposed to replace the SRL-based selector in Section 7.

2 OVERVIEW

Our goal is to enable automatic synthesis of advising tools that
can give advice onwhat to do to improve the performance of a
given program. We call those advice “relevant advising
sentences”. Formally, we define “relevant advising sentences”
as sentences in a given document that can serve as actionable
solutions for an input query on improving certain perfor-
mance aspects of a program (e.g., “how to improve memory
throughput”). To determine whether each of the sentences in
the givendocument belongs to the category of “relevant advis-
ing sentences” for the given query is a binary classification
problem. This section gives an overviewof our solution.

Egeria uses a two-stage design. As the top row in Fig. 1
shows, the two stages consider the “advising” and “relevance”
aspects respectively. The two boxes at the bottom part of Fig. 1
give the more detailed illustrations of the two stages. The first
stage, advising sentence recognition, recognizes all advising sen-
tences from the given document. The second stage, knowledge
recommendation, retrieves, from the set of advising sentences
collected in the first stage, the sentences relevant to the input
query through text retrieval methods, and returns them as
answers to the user. The output from the first stage can also be
directly reviewed by the user as a reminding summary of all
the essential guidelines contained in the input document.

The first stage is more challenging due to the limited effi-
cacy of existing NLP techniques. Egeria overcomes the diffi-
culties by adopting a multi-layered scheme guided by some
HPC domain-specific properties, as the left bottom box in
Fig. 1 shows. It builds its second stage upon two key text
retrieval techniques, namely the VSM representations and

the TF-IDF weighting method. We provide a detailed expla-
nation on the first stage in Section 3 and the second stage in
Section 4.

3 ADVISING SENTENCE RECOGNITION

Recognizing advising sentences requires the analysis of the
semantic and syntax of the sentences through some NLP
techniques. The main challenge is the limited efficacy of
each individual existing NLP techniques.

Two key features of Egeria help it circumvent those diffi-
culties. (1) It leverages some important properties of HPC
domains, including the common patterns in the suggesting
sentences in programming guides for HPC, and the impor-
tance of some special words and phrases related with perfor-
mance improvements in HPC. These significantly simplify
the problem. (2) It adopts a multi-layered design, employing
techniques at the levels of keywords based filtering, syntactic
dependence analysis, and semantic role labeling. The combi-
nation creates a synergy for one technique to complement the
weaknesses of another. Meanwhile, it effectively integrates
the HPC domain knowledge into the NLP techniques at each
of the layers. Together, these techniques lead to five selectors
that work as an assembly to recognize advising sentences
with a high accuracy. We next explain these two features in
more detail.

3.1 HPC Domain-Specific Properties

According to our observations on some HPC documents,
advising sentences of HPC are often featured with certain
patterns along with some key words. We crystallize the
observations into six categories as shown in Table 1 and five
sets of keywords as shown in Table 2.

As Table 1 shows, the first category corresponds to sen-
tences that contain some critical keywords (e.g., “good
choice” in the example sentence). Our observation shows
that appearances of such keywords can usually offer a suffi-
cient indication, regardless of the forms of the sentences.
We put together a collection of such keywords as FLAG-
GING_WORDS shown in Table 2.

The second category includes sentences that involve com-
parative relations that are formed with certain optimization-
relatedwords (part of XCOMP_GOVERNORS in Table 2).

Fig. 1. Overview of Egeria. The two boxes at the bottom illustrate the two
stages of Egeria, respectively.

GUAN ETAL.: AUTOMATIC SYNTHESIZER OFADVISING TOOLS FOR HIGH PERFORMANCE COMPUTING 331

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

The third category includes some passive sentences that
involve certain optimization-related keywords (part of
XCOMP_GOVERNORS in Table 2).

The fourth category includes imperative sentences that
involve words included in IMPERATIVE_WORDS shown
in Table 2. Such a form of sentence is a frequent form used
by suggesting sentences, and those keywords hint on their
relevance with performance optimizations.

The fifth category includes sentences whose subjects are
developer, programmer, or other special words contained
in KEY_SUBJECTS in Table 2.

The final category consists of sentences with a purpose
clause related with performance optimizations.

Except the first category, the patterns in the other catego-
ries are related with either the syntactic or semantic structure
of the given sentence. We employ a series of NLP techniques
to construct five selectors to help recognize the six patterns
from an arbitrarily given sentence, as explained next.

3.2 Five Selectors

The five selectors we have developed work in a series. From
the first to the fifth, they try to check whether the given sen-
tence meets a certain condition. As long as the sentence
meets the condition of one of the selectors, it is considered
to be an “advising sentence”.

3.2.1 Keyword Marching and Selector 1

The first selector is for the recognition of the first category in
Table 1. It is a simple keyword matching process. One
minor complexity is that one word could be in many differ-
ent variations of form, such as, “argue”, “argued”, “argues”,
and “argument”. We use the standard stemming technique
in NLP to reduce all the forms into the stem of the word
(e.g., “argu”). We do that for all the words in FLAGGING_-
WORDS and those in the given sentence before conducting
the keyword matching. The principal rule of this selector
can be formally expressed as follows:

Rule 1. A sentence is an advising sentence if it contains at least
one of the keywords in the FLAGGING_WORDS.

3.2.2 Dependency Parsing and Selectors 2,3,4

The next three selectors are for categories 2, 3, 4, and 5. As
these categories are all about syntactic structures of the sen-
tence, these selectors are all based on syntactic dependency
parsing. Dependency parsing is an automatic syntactic anal-
ysis approach that analyzes the grammatical structure of a
sentence. It focuses on analyzing binary asymmetrical rela-
tions (called dependency relations) between words within a
sentence [7]. Dependency parsing has been successfully

TABLE 1
HPC Advising Sentence Categories

* (S: a given sentence; Upper-cased words: sets of keywords shown in Table 2).

TABLE 2
Sets of Keywords Used in the Selectors

332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

applied to information extraction and text analysis [8]. A
dependency relation is composed of a subordinate word
(called the dependent), a word on which it depends (called
the governor), and an asymmetrical grammatical relation
between the two words.

Fig. 2 shows the dependency structure for an example
sentence generated by the Stanford CoreNLP dependency
parser [9]. The dependency relations are represented as
arrows pointing from a governor to a dependent. Each
arrow is labeled with a dependency type. For example, the
noun developer is a dependent of the verb prefer with the
dependency type nominal subject (nsubj) while it is a gover-
nor of the article a with the dependency type determiner
(det). Dependency relations are usually written in the for-
mat: relation(governor, dependent) [10]. The relations in the
two aforementioned examples are written as nsubj(prefer,
developer) and det(developer, a). For the uniformity of
representation, a virtual governor ROOT and a virtual rela-
tion “root” are used when expressing a word without an
actual governor in the sentence. For example, for the verb
prefer in the sentence Fig. 2, one may write the following:
root(ROOT, prefer).

Selector 2 takes advantage of dependency parsing to
detect sentences in category II (certain comparative senten-
ces) and category III (certain passive sentences). It specifi-
cally checks a dependency relation open clausal complement
(xcomp) and clausal complement (ccomp). The definition of
xcomp relations is as follows: The governor of an xcomp
relation is a verb or an adjective while the dependent is a
predicative or clausal complement without its own sub-
ject [10]. For example, in Table 1, the given sentences in cate-
gories II and III have relations xcomp(prefer, using) and
xcomp(leveraged, avoid) respectively. ccomp is similar to
xcomp. The principal rule used by Selector 2 is as follows:

Rule 2. A sentence is an advising sentence if it contains the fol-
lowing dependency relation: xcomp(g, *) or ccomp(g, *), where,
g 2 XCOMP_GOVERNORS.

Selector 3 is about the relevant imperative sentences. An
imperative sentence is a type of sentence that gives advice or
instructions or that expresses a request or command, as illus-
trated by the example sentence in Table 1 Category IV. Such
sentences can be recognized based on such a feature: The root
verb (i.e., the principal verb) in the sentence shall have no sub-
ject dependent. There are two complexities to note. First, the
subject of a verb could have two types: nominal subject (nsubj)
and passive nominal subject (nsubjpass). A nominal subject is a
noun phrase which is the syntactic subject of a clause, such as
“instructions” in the sentence “the scalar instructions can use
up to two SGPR sources per cycle”. A passive nominal subject
is that of a passive clause [7], such as “allocations” in the sen-
tence “all allocations are aligned on the 16-byte boundary”.
Both types of subjects should be checked and neither should
appear in the sentence. Second, the sentence must at the same
time be relevant to HPC optimizations. We notice that the root

verb in such sentences provide good hints in this aspect. Spe-
cifically, the selector checks whether the root verb is part of the
IMPERATIVE_WORDS in Table 2, and label the imperative
sentence as an HPC advising sentence if so. To address the
complexities in the various verb tenses, we use the lemma of a
verb,which is the verb’s canonical form (e.g., “run” for “runs”,
“ran”, “running”). The principal rule used by Selector 3 is as
follows:

Rule 3. A sentence is an advising sentence if its root verb vmeets
both of the following conditions:

1) lemma(v) 2 IMPERATIVE_WORDS;
2) v is not in nsubj or nsubjpass dependency relations.

Selector 4 is for category V, sentences with certain kinds
of subjects (e.g., “developers” in the category V example
sentence in Table 1). It finds out the dependent of nsubj rela-
tions and then checks whether they belong to the KEY_SUB-
JECTS set. The principal rule used by this selector is as
follows (lemma gets the canonical form of the words):

Rule 4. A sentence is an advising sentence if it contains the nsubj
dependency relation and the lemma of the dependent 2
KEY_SUBJECTS.

3.2.3 Semantic Role Labeling and Selector 5

Selector 5 treats category VI. This category involves the
semantic roles (e.g., purpose) of the parts of the sentence.
The selector hence employs semantic role labeling (SRL).
Because SRL is generally a more complex task compared
with dependency parsing and thus more error-prone, we
will discuss the possibilities of getting rid of SRL by consid-
ering specific dependency patterns in Section 7.

Semantic role labeling, also called shallow semantic pars-
ing, is an approach to detecting the semantic arguments
associated with predicates or verbs of a sentence and classi-
fying them into specific semantic roles. Semantic arguments
refer to the constituents or phrases in a sentence. Semantic
roles are representations that express the abstract roles that
arguments of a predicate take that reveal the general seman-
tic properties of the arguments in the sentence.

Fig. 3 shows an example attained through a SRLDemo2 [11].
The demo follows the definition of semantic roles encoded in
the lexical resource PropBank [12] and CoNLL-2004 shared
task [13]. There are six different types of arguments labeled as
A0-A5. These labels have different semantics for each verb as
specified in the PropBank Frames scheme. In addition, there
are also 13 types of adjuncts labeled as AM-XXX where XXX
specifies the adjunct type. In the example, V is the predicate,
A0 the subject, A1 the object, A2 the indirect object, AM-PNC
the purpose. The example shows three “SRL” columns, with
each corresponding to one semantic role relation centered on
one verb. The first “SRL” column, for instance, centers around

Fig. 2. Dependency structure for a sentence in Comparative Sentence category. xcomp(prefer, using).

2. http://cogcomp.cs.illinois.edu/page/demo_view/srl

GUAN ETAL.: AUTOMATIC SYNTHESIZER OFADVISING TOOLS FOR HIGH PERFORMANCE COMPUTING 333

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

http://cogcomp.cs.illinois.edu/page/demo_view/srl

the verb ‘maximize’. This verb takes the meaning of maxi-
mize.01 in the PropBank and has a subject ‘The first step’ and
an object ‘overall memory throughput for the application’. The
purpose argument for the verb ‘be’ also contains a predicate
‘minimize’ and its object ‘data transferwith lowbandwidth’.

Selector 5 uses SRL to detect sentences with purpose
clauses. It particularly seeks for the purposes related to HPC
optimizations. The predicate of the purpose clause usually
offers good hints on the relevance. Our empirical study shows
that, instead of finding the purpose clause of the sentence, the
selector can simply check whether the predicate of a labeled
argument (sentence component) belongs to KEY_PREDI-
CATES shown in Table 2. The principal rule of this selector is
put as follows:

Rule 5. A sentence is HPC advising sentence if it meets all the
following conditions:

1) the sentence contains an argument arg whose predicate
v 2 PREDICATE_SET.;

2) the arg doesn’t have any word with label A0.

We implement the selectors based on several NLP tools.
We use Stanza [14] for dependency parsing, AllenNLP [15]
for SRL, and NLTK [16] for tokenization, word stemming and
lemmatization. The design of the selection rules and key-
words andNLP uses, are currently based on our observations
about advising sentences found in HPC guides. The approach
is possible to apply to non-HPC domains; some extensions in
the design (keywords, rules, NLP uses)might be necessary.

4 KNOWLEDGE RECOMMENDATION

The second stage of Egeria is modeled as a text retrieval
problem. It builds a recommendation engine that tries to
identify advising sentences that are closely related with a
given query. Our exploration shows that two techniques,
vector space model (VSM) and term frequency-inverse doc-
ument frequency (TF-IDF), suit the problem well.

VSM [5] is used to represent a sentence (the query or an
advising sentence) in a feature vector form. It prepares for

the relevancy calculations. VSM represents a piece of text as
a vector of indexed terms. Each dimension corresponds to a
separate term. If a term occurs in the text, its value in the
vector is non-zero—the exact value is computed based on
TF-IDF [5], one of the best-known weighting methods. In
TF-IDF, the weight vector for a sentence s is vs ¼
½w1;s; w2;s; . . . ; wN;s�T . Each entry is computed as

wt;s ¼ tft;s � log jSj
jfs0 2 Sjt 2 s0gj ; (1)

where tft;s is the term frequency of term t in the sentence
and log jSj

jfs02Sjt2s0gj is the inverse sentence frequency. jSj is the
total number of sentences in the sentence set and jfs0 2 Sjt 2
s0gj is the number of sentences containing the term t. The
sentence similarity between a sentence s and a query q is
calcuated as cosine similarity

simðs; qÞ ¼ vT
s vq

kvdkkvqk : (2)

Our implementation of VSM is based on Gensim [17].
An advising tool produced by Egeria reports the top-

ranked sentences (having a similarity score higher than an
adjustable similarity threshold) as the answer to user’s query.
We use 0.15 as the default similarity threshold. Users can eas-
ily adjust the similarity threshold through the interface to con-
trol the number of advising sentences they get. To make the
sentences easy to understand, the answer is shown in an
HTML web page with the hyper references associated with
the sentences that link to the paragraph in the original docu-
ment. The advising tool contains an interface for inputting
queries. Besides directly inputting queries, users may also
upload a performance report of a program execution as the
query. Egeria currently supports GPU performance reports (a
PDF file output fromNVIDIANVPP),3 fromwhich, the advis-
ing tools by Egeria can find the described key performance
issues through simple regular expression based search accord-
ing to the report format.

5 EVALUATIONS

We conduct a set of experiments to examine the efficacy of
Egeria. Our experiments are designed to answer the following
four major questions: 1) Is Egeria useful for programmers in
easing their efforts in optimizing programs? 2) Do we really
need the recognition of advising sentences for easing the use
of programming guides?Howmuch does it help compared to
simple keyword search or other methods? 3) How does the
similarity threshold in knowledge recommendation stage
affect the performance? 4) Dowe really need the sophisticated
NLP-based design to recognize advising sentences? Howe
much does it help compared to other designs?

Due to space limit, please refer to our conference paper [6]
for the comparisons between our multi-layered design and
alternative methods (Question 4). Here, we just briefly men-
tion the key observations. Experiments on CUDA [18],
OpenCL [19], and Xeon Phi [20] programming guides show
that Egeria can recognize the advising sentences from these

Fig. 3. Semantic role labeling results for a sentence.

3. https://developer.nvidia.com/nvidia-visual-profiler

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

https://developer.nvidia.com/nvidia-visual-profiler

guides with over 80 percent precision rates, significantly
higher than other alternativemethods.

We next report our experiments and results on the first
three questions. We start with a user study, showing how
useful Egeria is to help programmers address some perfor-
mance issues of CUDA programs. We then provide some
detailed examinations of the benefits of the two-staged
design of Egeria in Section 5.2 and a sensitivity study of the
similarity threshold in Section 5.3.

5.1 User Study

The user study focuses on an advising tool generated by
Egeria to show how one can use NVIDIA profiler data or
questions to retrieve relevant and helpful tuning advice. We
got the advising tool by applying Egeria on the NIVIDA
CUDA Programming Guide [18], which was created to
guide the development or optimizations of code to run on
NVIDIA GPUs. We call the tool CUDA Adviser. The inter-
face of the tool is shown in Fig. 4.

Given a query, either an Nvidia Visual Profiler (NVVP)
report or a natural language-based query, our CUDA
Adviser responds with recommended sentences. (Users can
optionally ask it to also list all other advising sentences in
the subsections containing those recommended sentences.
In that case, the recommended ones will be highlighted) We
do not limit the number of sentences the tool can suggest.
An advising sentence is suggested as long as it is sufficiently
relevant (the similarity threshold is 0.15 as stated in Sec-
tion 4). In our experiments, the number of suggested senten-
ces for a query is typically 5–25. In the extreme case that no
good answers exist, the advising tool gives “No relevant
sentences found”.

In the user study, 37 graduate students were asked toman-
ually optimize a sparse matrix manipulation programwritten
using CUDA. The program contains a kernel thatmakes some
normalization to values in a matrix. The original program has
optimization potential in multiple aspects, including memory
accesses, thread divergences, loop controls, and cache perfor-
mance. All students were given the original CUDA

programming guide and were allowed to use any other
resources and tools (including NVIDIA GPU profiling tools)
in the process, while Egeria were provided to 22 randomly
chosen students out of the 37. There are two ways that stu-
dents could use CUDA Adviser. One is to feed it with an
NVVP report, the other is to directly query it with questions.
We gave no restrictions on how the students can use the tool.
They typically started with the first approach and then used
the second approach when they had other questions. As a
course project, the students were asked to submit the opti-
mized code and report in twoweeks.

AnNVVP report usually has four sections. The first section
provides an overview of the performance issues while the
later three sections each describe the problems in each of the
three main aspects: instruction andmemory latency; compute
resources; memory bandwidth. Some of the later three sec-
tions could be empty if no issues exist in those aspects. Each
performance issue in a section contains three parts ‘title’,
‘description’, and optional ‘optimization’. We use all the three
parts to compose our queries.

When fed with an NVVP report, our CUDA Adviser
searcheswithin each section and take subsections that contain
the “Optimization:” identifier as performance issue-related
contents. It then extracts those subsections as performance
issue-related contents. Table 3 shows the extracted perfor-
mance issues for the sparse matrix program used in this case
study. Each title and its description are combined to form a
query to ourCUDAAdviser.

Fig. 5 shows the sentences suggested by our CUDA
Adviser given the example NVVP report. For space limita-
tions, it shows only the sentences selected from Chapter 5 of
the CUDA Guide (eight other sentences were chosen in the
other 14 chapters). Besides the recommended sentences, the
figure also shows some of the other advising sentences
residing in the same subsections as the suggested sentences
do. The recommended ones are highlighted in the figure.

Among the eight recommended sentences, we can see
that the following sentence directly provides suggestions on
handling the “register usage” issue:

Fig. 4. The initial webpage of the CUDA Adviser, displaying the advising sentences of CUDA Programming Guide. The two buttons on top allow users
to upload a performance report in PDF as a query. The search box at the right top corner allows users to directly input queries. The range bar in the
middle allow users to adjust the number of retrieved sentences.

GUAN ETAL.: AUTOMATIC SYNTHESIZER OFADVISING TOOLS FOR HIGH PERFORMANCE COMPUTING 335

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

Register usage can be controlled using the maxrregcount
compiler option or launch bounds as described in Launch
Bounds.

The following sentence is closely related to the “divergent
branches” issue:

To obtain best performance in cases where the control flow
depends on the thread ID, the controlling condition should
be written so as tominimize the number of divergent warps.

With the response, if users want to learn more details,
they can easily access the corresponding subsections in the
original document through hyper-links associated with
each section/subsection title in the summary (these titles
are underlined in Fig. 5). For example, by examining Section
5.4.2. Control Flow Instruction, which contains the aforemen-
tioned recommended sentence on “divergent branches”,
users can find the following sentences that explain warp
divergence:

Any flow control instruction (...) can significantly impact
the effective instruction throughput by causing threads of
the same warp to diverge (...). If this happens, the different
executions paths have to be serialized, increasing the total
number of instructions executed for this warp...

The reports we received from the students in the user
study indicated that the retrieved advising sentence along
with its context from the original document helped them
identify an optimization opportunity on the if-else block
shown in Fig. 6a. The optimized version of the block is
shown in Fig. 6b which has the if-else branches removed.

In addition to NVVP reports, students also posted queries
to the advising tool. Some example querieswere “warp execu-
tion efficiency”, “How to avoid thread divergence”, “memory
access coalescence”, and so on.

According to students’ report and optimized code, optimi-
zations by the Egeria group included memory optimizations

TABLE 3
Subsections From an Example NVVP Report for Indicating Performance Issues (With the Descriptions Abridged)

Subsection Description

GPU Utilization May Be
Limited By Register Usage

Theoretical occupancy is less than 100% but is large enough that increasing occupancymay not
improve performance.... The kernel uses 31 registers for each thread (7936 registers for each block)...

Divergent Branches Compute resource are used most efficiently when all threads in a warp have the same branching
behavior. When this does not occur the branch is said to be divergent. Divergent branches lower
warp execution efficiency which leads to inefficient use of the GPU’s compute resources....

Fig. 5. Retrieved Sentences from Chapter 5 of CUDA Guide for a Given NVVP Report. (Highlighted are recommended sentences; others, including
omitted ones, are advising sentences in the same subsections as the recommended ones are.)

Fig. 6. Optimization to minimize thread divergence.

336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

(e.g., “rearrange memory access instructions”), minimize
thread divergences (e.g., “remove if-else”), increase the
amount of parallelism (e.g., “tuning the dimensions of thread
blocks and grids”), and minimize the number of instructions
a thread needs to do (e.g., “loop unrolling”). The non-Egeria
group as a whole covered most of these optimizations, but an
individual in that group typically implemented fewer optimi-
zations than an individual in the Egeria group did, as with
Egeria, it is easier to identify a comprehensive set of relevant
optimizations. We did not see a significant difference in the
amount of prior GPU experience between the two groups of
students. A quantitative examination of responses’ accuracy
and comparison is in the next subsection.

Table 4 reports the speedups that the students’ optimiza-
tions have achieved on two GPUs of different models over
the original CUDA program. The much larger speedups
obtained by the students that have used Egeria suggest the
usefulness of the advising tool by Egeria: With its advice,
the students were able to better target the set of suitable
optimizations in their explorations, which has saved them
time in searching in the original documents or other resour-
ces and has helped prevent them from trying many irrele-
vant optimizations.

5.2 Effectiveness of the Two-Level Design

In this part, we report a deeper examination of the effective-
ness of the two-level design featured by Egeria, and com-
pare it with some alternative methods.

Recall that the key idea of the two-stage design is to first
recognize advising sentences, and then from them, find the
sentences related with the input query. We compare it with
two one-stage methods:

� Keywords method: This method uses keywords in
the input query to directly search the original pro-
gramming guide to find relevant sentences. Both the

keywords and the words in the document are
reduced to their stem forms to allow matchings
among different variants of a word.

� Full-doc method: This method also queries the original
programming guide without first extracting advising
sentences. Unlike the keywords method, this method
does not use keywords, but uses the same knowl-
edge recommendation method as Egeria uses—that
is, through the use of VSM and TF-IDF techniques as
Section 4 describes.

We applied the several methods to four GPU perfor-
mance profiling reports. These reports were collected
through an NVIDIA GPU profiling tool (NVPP)4, with each
containing a detailed description of the performance issues
of a GPU program execution. The four reports are for the
following four CUDA programs:

� knnjoin.cu: a K-Nearest Neighbor (KNN) program
that has thread divergence problems in the kernel;

� knnjoin-opt.cu: knnjoin.cu after some task reorder-
ing to reduce the thread divergence for the kernel;

� trans.cu: a matrix transpose that has a large number
of non-coalesced memory accesses;

� trans-opt.cu: trans.cu after optimizing the memory
accesses through the use of 2D surface memory.

The second column in Table 5 lists the top issue(s) of
the most time-consuming kernel of each of the four
programs.

We fed the reports into our CUDA advising tool and the
full-doc method; they each returned a set of sentences for
each of the reports as their answers on how to resolve the
performance issues in that report. For the keywords method,
we tried a number of keywords for each performance issue
as listed below:

� knnjoin (issue 1): warp, execution, efficiency, warp
efficiency, warp execution efficiency;

� knnjoin (issue 2): divergence, branch, divergent
branch;

� knnjoin_opt: memory, alignment, memory align-
ment, access pattern;

� trans (issue 1): utilization, memory, instruction,
memory instruction;

� trans (issue 2): instruction, latency, instruction latency;
� trans_opt: memory, bandwidth, memory bandwidth;

TABLE 4
Speedups on a GPU Program

GeForce GTX 780 GeForce GTX 480

Average Median Average Median

Group 1: Egeria used 6.27X 5.93X 4.15X 4.43X
Group 2: Egeria not used 4.09X 3.58X 2.59X 2.39X

TABLE 5
Quality of Answers on Performance Queries

NVVP
Report

Performance
Issues

#gnd Egeria Method Full-doc Method Keywords Method

truth P R F P R F P R F

knnjoin P1 6 0.667 1.0 0.8 0.146 1.0 0.255 0.154 1.0 0.267
P2 2 0.667 1.0 0.8 0.167 1.0 0.286 0.333 1.0 0.5

knnjoin_opt P3 7 1.0 0.857 0.923 0.304 1.0 0.467 0.571 0.571 0.571

trans P4 8 0.667 1.0 0.8 0.211 1.0 0.348 0.571 0.5 0.533
P5 11 0.667 0.909 0.769 0.182 0.909 0.303 0.364 0.364 0.364

trans_opt P6 18 0.652 0.833 0.732 0.308 0.889 0.457 0.545 0.333 0.414

P1: Low Warp Execution Efficiency; P2: Divergent Branches; P3: Global Memory Alignment and Access Pattern; P4: GPU Utilization is Limited by Memory
Instruction Execution; P5: Instruction Latencies may be Limiting Performance; P6: GPU Utilization is Limited by Memory bandwidth.
(P: precision; R: recall; F: F-measure).

GUAN ETAL.: AUTOMATIC SYNTHESIZER OFADVISING TOOLS FOR HIGH PERFORMANCE COMPUTING 337

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

The underlined are the keywords that yield the best overall
results in terms of F-measure (defined in the next
paragraph).

Table 5 reports the quality of the results by the three
methods. For keywords method, the table shows only the
results by the aforementioned best keywords. The three
metrics we use are commonly used in information retrieval:
precision P (#true positive/#answers), recall R (#true posi-
tive/#groundTruth), and the combined metric F-measure
F ¼ 2 � P �R=ðP þRÞ. We asked three domain experts to
manually label all the sentences in the CUDA programming
guide regarding whether they are advising sentences rele-
vant for resolving each of the performance issues listed in
Table 5. The Fleiss’ kappa values [21] (a standard measure
for assessing the reliability of agreement of a number of
raters) of the labeling results are all above 0.8, indicating
large agreements among the raters. Majority vote is used to
generate the ground truth answers for each of the perfor-
mance issues.

As the “Egeria” column in Table 5 shows, our advising
tool returns most relevant advising sentences, with the
recall rates at 83-100 percent. The small number of missing
sentences are mostly due to some difficulties in advising
sentence recognitions. A fraction (0-35 percent) of the
answers are false positives for some limitations of the
VSM/TF-IDF technique used for similarity computations.
But overall, the advising tool gives answers significantly
better than both alternative methods give.

Because the “full-doc” method uses the same knowledge
recommendation method as the Egeria-based advising tool
uses and advising sentences are part of the original docu-
ment, this method finds all the sentences returned by the
Egeria-based CUDA advising tool. However, it also yields
many sentences that are not advising sentences because it
works on the original document. Some of these sentences,
for instance, are detailed explanations of some terms or con-
cepts, and some are details of some example architectures.
Although these may have some relevancy to the input
queries, they do not give suggestions on how to optimize
the program to resolve the performance issues specified in
the queries. As Table 5 shows, the precision of the returned
results by the full-doc method is only 30 percent or below.

The “keywords” method is inferior in both precision and
recall. The reason is that lots of sentences containing the
keywords are not advising sentences, but explanations of
some details or examples. At the same time, many relevant
advising sentences do not contain the keywords. Please
refer to [6] for example sentences.

We applied stemming to the keywords and documents to
allow matchings between variants of words. Without stem-
ming, the false positives of the “keywords” method could
get reduced slightly, but the recall rate would get much
lower; the overall results would be even worse.

5.3 Sensitivity Analysis

In knowledge recommendation stage (Section 4), the default
similarity threshold is set to 0.15 as shown in Fig. 4. The
advising tools only recommend advising sentences with a
similarity score higher than the default threshold. To inves-
tigate the influence of the similarity threshold, we evaluated

the performance of the three methods (Egeria, Full-doc, and
Keywords) under different threshold settings.

We vary the similarity threshold from zero to 0.5 with a
step size of 0.01. Fig. 7 shows the Precision and Recall
curves (PRCs) and Receiver Operating Characteristic curves
(ROCs) for two benchmarks used in Table 5. The PRCs and
ROCs for other benchmarks are similar. Since the Keywords
method does not use the knowledge recommendation algo-
rithm as Egeria and Full-doc method use, it is not affected
by different similarity thresholds. The different triangle
points correspond to different keywords in the input query.
The smaller the similarity threshold is, the larger number of
recommended sentences and higher false-positive rate and
true positive rates we see.

According to the PRCs in Fig. 7, with the same recall, the
Egeria method gives the highest precision consistently.
Also, it is worth mention that our default similarity thresh-
old (i.e., 0.15) achieves a good balance between recall and
precision: it yields, in most cases, a recall rate of 100 percent
and also the highest precision. With a smaller threshold,
more sentences are recommended at the expense of a
decrease in precision since the query results are diluted by
advising sentences that may not be solutions to the specific
query. For instance, in Fig. 7b, a similarity threshold of 0.8
can give a recall rate of 100 percent but a precision rate of
35.5 percent (31 recommended sentences). This means that
a user needs to go through more information to find poten-
tial solutions. In practice, with our advising tools, users can
adjust the similarity threshold to control the number of rec-
ommended sentences to meet their needs.

6 EXTENSIONS FOR SEMANTIC SENSITIVITY

We adopted the term frequency-inverse document fre-
quency to represent advising sentences. This representation
allows sentence ranking according to their possible rele-
vance based on the number of overlapped words and the

Fig. 7. PRCs and ROCs. The “Egeria” and “Full-doc” curves correspond
to a spectrum of sampled similarity thresholds (st) as shown in the sub-
graph captions. P1, P5 refer to performance issues listed in Table 5.

338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

importance of those words. The main limitation is that it
cannot recognize the relevance between sentences with a
similar meaning but in different term vocabularies. It is
called the semantic sensitivity problem.

Several models (e.g., Latent Semantic Indexing (LSI) [22],
Latent Dirichlet Allocation (LDA) [23], Random Projection
(RP) [24]) have been proposed to avoid the semantic sensi-
tivity problem by learning representation for a document in
a latent semantic space with lower dimensionality. Each
latent dimension corresponds to a latent topic. Each docu-
ment is represented in terms of latent topics rather than
words. These models rely on different techniques to deter-
mine the relationship between words and latent topics. LSI,
also called Latent Semantic Analysis, uses a mathematical
technique called Singular Value Decomposition (SVD) for
dimension reduction. For real corpora, the recommended
number of target dimensions is 200-500 [25]. LDA is a prob-
abilistic extension of LSI, which means that the latent topics
of LDA are probability distributions over words and also
that each document is a soft mixture of topics. RP is a more
computationally efficient, yet sufficiently accurate method
for dimension reduction, compared with LSI. In RP, the
original high dimensional data is projected onto a lower-
dimensional subspace using a randommatrix.

Recent proposed word embeddings (e.g., Word2Vec [26],
[27], [28] andGloVe [29] learn a low-dimensional vector repre-
sentation, called embedding, for each word. These embeddings
capture the semantic relationships among words. For exam-
ple, vec(Berlin) - vec(Germany) + vec(France) is close to vec
(Paris), where vecð:Þ is the embedding function. Based on the
embeddings, one can calculate the distance between two
documents byWordMover’s Distance (WMD) [30].

We compared these advancedmodels andWord2Vec with
TF-IDF. For methods LSI, LDA, and RP, we set the latent
dimension to 50, 100, and 200. For Word2Vec, we used word

embeddings of dimension 100 pre-trained on Wikipedia and
Gigaword [29] and finetuned these embeddings on the
CUDA programming guide using Gensim [17]. The ROCs for
the benchmark knnjoin (issue 1) and trans (issue 2), with dif-
ferent models and a latent dimension 100 are shown in Fig. 8.
Other benchmarks and latent dimensions have similar obser-
vations. Given the same false-positive rate, these advanced
models yield similar or even worse true positive rate com-
pared with TF-IDF. This may result from the limited size of
the training corpus (i.e., sentences from CUDA Programming
Guide). Further explorations with larger training data sizes
can bemoremeaningful.

7 EXTENSIONS FOR ADVISING SENTENCE

RECOGNITION

Advising sentence recognition takes advantage of HPC
domain-specific properties, including advising sentence pat-
terns and corresponding keywords, to simplify the problem
into five simpler ones. This results in five selectors working as
an ensemble to identify advising sentences with high accu-
racy. Although this multi-layered design has shown much
better results over the alternatives in our conference paper [6],
the five selectors rely on exact matching with the sets of key-
words listed in Table 2. The first open question is whether we
can further improve the classification accuracy if Egeria can
identify advising sentences that contain semantic-equivalent
or semantic-similar words. Also, the fifth selector (Rule #5)
uses semantic role labeling (SRL) which is generally a more
complex task than dependency parsing and thus more error-
prone. The second open question is whether we can replace
semantic role labeling with the more accurate dependency
parsing technique by considering specific dependency pat-
terns. This section reports our explorations to answer the two
open questions.

Keyword Expansion. We leveraged pre-trained word2-
vec [27] to expand the sets of keywords in Table 2. We add a
word w from the programming guide into a set of keywords
S, where S 2 {FLAGGING_WORDS, XCOMP_GOVER-
NORS, IMPERATIVE_WORDS, KEY_SUBJECTS, KEY_PRE-
DICATES} if the cosine similarity between w and any word in
the set S is larger than a threshold. We vary the threshold
from 0.8 to 0.95. The five selectors then use the expanded sets
of keywords to classify advising sentences.

We call the method egeria-word2vec and show its classifica-
tion performance in Fig. 9 as a ROC curve.We compare egeria-
word2vec with two other methods egeria and keywordAll. For

Fig. 8. ROC curves for P1 knnjoin(issue 1) and P5 trans (issue 2) listed
in Table 5.

Fig. 9. ROCs for advising sentence recognition on three programming guides: CUDA [18], OpenCL [19], and Xeon [20].

GUAN ETAL.: AUTOMATIC SYNTHESIZER OFADVISING TOOLS FOR HIGH PERFORMANCE COMPUTING 339

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

the keywordAll approach, we used the same experiment set-
ting: we apply the first selector (the keyword-based selector)
but use the union of all the keywords used in all selectors as
the replacement of the FLAGGINGWORDS.

According to Fig. 9, egeria-word2vec with a high similarity
threshold can achieve the same accuracy as egeria in recog-
nizing advising sentences. When we lower the similarity
threshold to include more semantic-similar keywords, it is
worse than the keywordAll approach under the same false-
positive rate. This means incorporating semantic-similar
words into the sets of keywords lower the precision of the
advising sentence recognition.

Selector Approximation. We replaced the fifth selector
(Rule #5) introduced in Section 3.2.3 using the following
simpler dependency parsing-based rule:

Rule 6. A sentence is a HPC advising sentence if it meets all the
following conditions:

1) The sentence contains a verb v and lemmaðvÞ 2
KEY_PREDICATES.

2) v is not in any subj dependency relation.

We use egeria-apsrl to refer to the advising sentence rec-
ognition method using the five selectors, Rule #1-#4 and
Rule #6. Its classification performance is shown in Fig. 9. ege-
ria-apsrl is able to achieve similar precision and recall com-
pared with egeria.

8 RELATED WORK

The importance of tools for HPC has been well recognized.
Through the years, many high quality HPC tools have been
developed.HPCToolkit [1] provides a set of tools for profiling
and analyzing HPC program executions. Other tools for per-
formance profiling include some code-centric tools (e.g.,
VTune [31], Oprofile [32], CodeAnalyst [33], and Gprof [34])
and some other data-centric tools [35], [36], [37], [38]. Just for
GPU, there are numerous performance profiling tools (e.g.,
NVVP [2], NVProf [2], CodeXL [39], GPU PerfStudio [40],
Snapdragon [41]. There have also been many profiling tools
developed for data centers and cloud (e.g., PerfCompass [42]).
All these tools have concentrated on measuring and identify-
ing the main performance issues, rather than creating advis-
ing tools for offering advice on how to fix the issues.

NLP has been used in software engineering broadly. For
instance, it has been used for some bug report classifica-
tion [43], bug report summarization [44], bug severity pre-
diction [45], and relevant source files retrieval [46]. The
goals of those work differ from the recognition of advising
sentences. For instance, report summarization aims at creat-
ing a representative summary or abstract of a report [47]. It
focuses on finding the most informative sentences, which
may not be advising sentences. The different goals of Egeria
motivate its unique design and distinctive ways to leverage
NLP techniques.

9 CONCLUSION

We developed the framework Egeria for automatic synthe-
sis of HPC advising tools. Advising tools generated by Ege-
ria can provide users with a list of important optimization
guidelines to remind them of available optimization rules,

and suggest related optimization advice based on the per-
formance issues of a program or questions from a user. Ege-
ria is made possible by integrating HPC domain properties
with NLP techniques for recognizing advising sentences
with a high accuracy. Both qualitative and quantitative
experiments demonstrate the usefulness of Egeria for HPC.

ACKNOWLEDGMENTS

John Mellor-Crummey gave us some valuable suggestions
on this work. The authors would like to thank Lars Nyland
and Huiyang Zhou for their comments at the early stage of
this work. This material is based upon work supported by
DOE Early Career Award (DE-SC0013700), and the National
Science Foundation (NSF) Grants No. 1455404, 1455733
(CAREER), and 1525609. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DOE or NSF.

REFERENCES

[1] L. Adhianto et al., “HPCTOOLKIT: Tools for performance analysis
of optimized parallel programs,” Concurrency Comput., Pract. Expe-
rience, vol. 22, no. 6, pp. 685–701, 2010.

[2] NVIDIA. Profiler User’s Guide. PDF file. 2017. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.
pdf

[3] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Comput-
ingWith GPUs. Burlington,MA, USA:MorganKaufmann, 2012.

[4] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL
Programming Guide. London, U.K.: Pearson Education, 2011.

[5] P. D. Turney et al., “From frequency to meaning: Vector space mod-
els of semantics,” J. Artif. Intell. Res., vol. 37, no. 1, pp. 141–188, 2010.

[6] H. Guan, X. Shen, andH. Krim, “Egeria: A framework for automatic
synthesis of HPC advising tools through multi-layered natural lan-
guage processing,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., 2017, Art. no. 10.

[7] S. K€ubler, R. McDonald, and J. Nivre, “Dependency parsing,” Syn-
thesis Lectures Hum. Lang. Technol., vol. 1, no. 1, pp. 1–127, 2009.

[8] C. Niklaus, M. Cetto, A. Freitas, and S. Handschuh, “A survey on
open information extraction,” in Proc. 27th Int. Conf. Comput. Lin-
guistics, Aug. 2018, pp. 3866–3878.

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The stanford CoreNLP natural language process-
ing toolkit,” in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics:
Syst. Demonstrations, 2014, pp. 55–60.

[10] M.-C.DeMarneffe andC.D.Manning, “Stanford typeddependencies
manual,” Stanford University, Stanford, CA, 2008. [Online]. Avail-
able: https://nlp.stanford.edu/software/dependencies_manual.pdf

[11] V. Punyakanok, D. Roth, andW. Yih, “The importance of syntactic
parsing and inference in semantic role labeling,” Comput. Linguis-
tics, vol. 34, no. 2, pp. 257–287, 2008. [Online]. Available: http://
cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf

[12] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An
annotated corpus of semantic roles,” Comput. Linguistics, vol. 31,
no. 1, pp. 71–106, 2005.

[13] X. Carreras and L. M�arquez, “Introduction to the CoNLL-2005
shared task: Semantic role labeling,” in Proc. 9th Conf. Comput.
Natural Lang. Learn., 2005, pp. 152–164.

[14] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza:
A Python natural language processing toolkit for many human
languages,” in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics:
Syst. Demonstrations, 2020, pp. 101–108.

[15] M. Gardner et al., “AllenNLP: A deep semantic natural language
processing platform,” in Proc. Workshop NLP Open Source Softw.,
2017, pp. 1–6.

[16] S. Bird, “NLTK: The natural language toolkit,” in Proc. COLING/
ACL Interactive Presentation Sessions, 2006, pp. 69–72.

[17] R. �Rehu
�
�rek and P. Sojka, “Software framework for topic modelling

with large corpora,” in Proc. LREC Workshop New Challenges NLP
Frameworks, May 2010, pp. 45–50, [Online]. Available: http://is.
muni.cz/publication/884893/en

340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://nlp.stanford.edu/software/dependencies_manual.pdf
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[18] NIVIDA CUDA programming guide, 2016, Accessed: Jul. 19, 2017.
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/

[19] AMD OpenCL optimization guideline, 2013, Accessed: Jul. 19, 2017.
[Online]. Available: http://developer.amd.com/tools-and-sdks/
opencl-zone/amd-accelerated-par allel-processing-app-sdk/opencl-
optimization-guide/

[20] Intel Xeon Phi best practice guide, 2017, Accessed: Jul. 19, 2017.
[Online]. Available: http://www.prace-ri.eu/best-practice-guide-
intel-xeon-phi-html/

[21] J. L. Fleiss, “Measuring nominal scale agreement among many
raters,” Psychol. Bull., vol. 76, no. 5, 1971, Art. no. 378.

[22] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala,
“Latent semantic indexing: A probabilistic analysis,” in Proc. 17th
ACM SIGACT-SIGMOD-SIGART Symp. Princ. Database Syst., 1998,
pp. 159–168. [Online]. Available: http://doi.acm.org/10.1145/
275487.275505

[23] D.M. Blei, A. Y. Ng, andM. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022,Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944937

[24] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: Applications to image and text data,” in Proc. 7th ACM
SIGKDD Int. Conf. Knowl. Discov. DataMining, 2001, pp. 245–250.

[25] R. B. Bradford, “An empirical study of required dimensionality
for large-scale latent semantic indexing applications,” in Proc.
17th ACM Conf. Inf. Knowl. Manage., 2008, pp. 153–162.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in Proc. Int. Conf. Learn.
Representations, 2013.

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. 26th Int. Conf. Neural Inf. Process. Syst.,
2013, pp. 3111–3119.

[28] T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic regularities in con-
tinuous spaceword representations,” in Proc. Conf. North Amer. Chap-
ter Assoc. Comput. Linguistics: Hum. Lang. Technol., 2013, pp. 746–751.

[29] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vec-
tors for word representation,” in Proc. Conf. Empir. Methods Natu-
ral Lang. Process., 2014, pp. 1532–1543.

[30] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 957–966.

[31] J. Reinders, VTune Performance Analyzer Essentials. Santa Clara,
CA, USA: Intel Press, 2005.

[32] J. Levon and P. Elie, “OProfile: A system profiler for linux,” 2004,
Accessed: Aug. 28, 2020. [Online]. Available: https://oprofile.
sourceforge.io

[33] Amd. An introduction to analysis and optimization with AMD
CodeAnalyst Performance Analyzer. PDF file. 2008. [Online]. Avail-
able: https://developer.amd.com/wordpress/media/2012/10/
Introduction_to_CodeAnalyst.pdf

[34] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call
graph execution profiler,” ACM SIGPLAN Notices, vol. 17, no. 6,
pp. 120–126, 1982.

[35] B. R. Buck and J. K. Hollingsworth, “Data centric cache measure-
ment on the Intel ltanium 2 processor,” in Proc. ACM/IEEE Conf.
Supercomputing, 2004, p. 58.

[36] R. Lachaize, B. Lepers, and V. Qu�ema, “MemProf: A memory pro-
filer for NUMA multicore systems,” in Proc. USENIX Annu. Tech.
Conf., 2012, Art. no. 5.

[37] X. Liu and J. Mellor-Crummey, “Pinpointing data locality prob-
lems using data-centric analysis,” in Proc. 9th Annu. IEEE/ACM
Int. Symp. Code Gener. Optim., 2011, pp. 171–180.

[38] C. McCurdy and J. Vetter, “Memphis: Finding and fixing NUMA-
related performance problems on multi-core platforms,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., 2010, pp. 87–96.

[39] Codexl quick start guide, 2012, Accessed: Dec. 14, 2016. [Online].
Available: http://developer.amd.com/tools-and-sdks/opencl-
zone/codexl

[40] GPU PerfStudio, 2016, Accessed: Dec. 14, 2016. [Online]. Available:
http://developer.amd.com/tools-and-sdks/graphics-development/
gpu-perfstudio

[41] Qualcomm. Snapdragon Profiler Quick Start Guide. 2016. [Online].
Available: https://developer.qualcomm.com/download/
sdprofiler/sdprofiler-quick-start-guide.pdf

[42] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut,
“PerfCompass: Online performance anomaly fault localization
and inference in infrastructure-as-a-service clouds,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 6, pp. 1742–1755, Jun. 2016.

[43] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and
data mining for bug report classification,” J. Softw.: Evol. Process,
vol. 28, pp. 150–176, 2016.

[44] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “AUSUM:
Approach for unsupervised bug report summarization,” in Proc.
ACMSIGSOFT 20th Int. Symp. Found. Softw. Eng., 2012, Art. no. 11.

[45] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction,”
in Proc. 19th Work. Conf. Reverse Eng., 2012, pp. 215–224.

[46] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proc. 22nd ACM SIG-
SOFT Int. Symp. Found. Softw. Eng., 2014, pp. 689–699.

[47] D. Das and A. F. Martins, “A survey on automatic text summa-
rization,” Literature Survey Lang. Statist. II Course at CMU, vol. 4,
pp. 192–195, 2007.

Hui Guan (Member, IEEE) is currently an assistant
professor at the College of Information and Com-
puter Sciences (CICS), University ofMassachusetts
Amherst. Her research interests include the inter-
section between machine learning and program-
ming systems.

Xipeng Shen (Senior Member, IEEE) is a profes-
sor with the Computer Science Department,
North Carolina State University, Raleigh, North
Carolina. He is an ACM distinguished speaker.
His current research focuses on heterogeneous
massively parallel computing, high performance
machine learning, and high-level large-scale pro-
gram optimizations.

Hamid Krim (Fellow, IEEE) is presently on the fac-
ulty in the ECE Department, North Carolina State
University, Raleigh, North Carolina, leading the
Vision, Information and Statistical Signal Theories
and Applications group, whose research interests
are in statistical signal and image analysis and
mathematical modeling with a keen emphasis on
applied problems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GUAN ETAL.: AUTOMATIC SYNTHESIZER OFADVISING TOOLS FOR HIGH PERFORMANCE COMPUTING 341

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 30,2020 at 22:14:34 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-par allel-processing-app-sdk/opencl-optimization-guide/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-par allel-processing-app-sdk/opencl-optimization-guide/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-par allel-processing-app-sdk/opencl-optimization-guide/
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/
http://doi.acm.org/10.1145/275487.275505
http://doi.acm.org/10.1145/275487.275505
http://dl.acm.org/citation.cfm?id=944919.944937
https://oprofile.sourceforge.io
https://oprofile.sourceforge.io
https://developer.amd.com/wordpress/media/2012/10/Introduction_to_CodeAnalyst.pdf
https://developer.amd.com/wordpress/media/2012/10/Introduction_to_CodeAnalyst.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl
http://developer.amd.com/tools-and-sdks/graphics-development/gpu-perfstudio
http://developer.amd.com/tools-and-sdks/graphics-development/gpu-perfstudio
https://developer.qualcomm.com/download/sdprofiler/sdprofiler-quick-start-guide.pdf
https://developer.qualcomm.com/download/sdprofiler/sdprofiler-quick-start-guide.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

